Higher order temporal finite element methods through mixed formalisms

نویسنده

  • Jinkyu Kim
چکیده

The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed finite element formulation enriched by Adomian method for vibration analysis of horizontally curved beams

Abstract: The vibration analysis of horizontally curved beams is generally led to higher order shape functions using direct finite element method, resulting in more time-consuming computation process. In this paper, the weak-form mixed finite element method was used to reduce the order of shape functions. The shape functions were first considered linear which did not provide adequate accuracy....

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A New Class of Higher Order Mixed Finite Volume Methods for Elliptic Problems

We introduce a new class of higher order mixed finite volume methods for elliptic problems. We start from the usual way of changing the given equation into a mixed system using the Darcy’s law, u = −K∇p. By integrating the system of equations with some judiciously chosen test spaces on each element, we define new mixed finite volume methods of higher order. We show that these new schemes are eq...

متن کامل

A priori error estimates for higher order variational discretization and mixed finite element methods of optimal control problems

* Correspondence: zulianglux@126. com College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, PR China Full list of author information is available at the end of the article Abstract In this article, we investigate a priori error estimates for the optimal control problems governed by elliptic equations using higher order variational discretization and mixed finite elem...

متن کامل

Mixed Finite Element Methods of Higher-Order for Model Contact Problems

This paper presents mixed finite element methods of higher-order for a simplified Signorini problem and an idealized frictional problem. The discretization is based on a mixed variational formulation proposed by Haslinger et al. which is extended to higher-order finite elements. To guarantee the unique existence of the solution of the mixed method, a discrete inf-sup condition is proven. Approx...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014